Matrices with totally signed powers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Matrices with Signed Null-Spaces

We denote by Q(A) the set of all matrices with the same sign pattern as A. A matrix A has signed null-space provided there exists a set S of sign patterns such that the set of sign patterns of vectors in the null-space of à is S for each à ∈ Q(A). Some properties of matrices with signed null-spaces are investigated.

متن کامل

Accurate Computations with Totally Nonnegative Matrices

Is it possible to perform numerical linear algebra with structured matrices to high relative accuracy at a reasonable cost? In our talk we answer this question affirmatively for a class of structured matrices whose applications range from approximation theory to combinatorics to multivariate statistical analysis [1, 2, 4]—the Totally Nonnegative (TN) matrices, i.e. matrices all of whose minors ...

متن کامل

Spectra of signed adjacency matrices

A signed adjacency matrix is a {−1, 0, 1}-matrix A obtained from the adjacency matrix A of a simple graph G by symmetrically replacing some of the 1’s of A by −1’s. Bilu and Linial have conjectured that if G is k-regular, then some A has spectral radius ρ(A) ≤ 2 √ k − 1. If their conjecture were true then, for each fixed k > 2, it would immediately guarantee the existence of infinite families o...

متن کامل

On the powers of fuzzy neutrosophic soft matrices

In this paper, ‎The powers of fuzzy neutrosophic soft square matrices (FNSSMs) under the operations $oplus(=max)$ and $otimes(=min)$ are studied‎. ‎We show that the powers of a given FNSM stabilize if and only if its orbits stabilize for each starting fuzzy neutrosophic soft vector (FNSV) and prove a necessary and sufficient condition for this property using the associated graphs of the FNSM‎. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2004

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(03)00643-8